A40
North Oxford Bypass

Archaeological Assessment

Full Report

Volumes 1, 2 & 3:

OXFORD ARCHAEOLOGICAL UNIT
January 1994
A40 North Oxford Bypass
Archaeological Assessment

Full Report

Vol 1 Main Text

1. Introduction
2. Assessment Approach and Methodology
3. Detailed Assessment

Vol 2 Appendices
A Sources and Bibliography
B Fieldwalking
C Geophysics
D Trenching

Vol 3 Maps
General data
Survey
Trenching/Geophysics/Fieldwalking
A40 North of Oxford Improvement Scheme

1. Introduction

1.1 General Background

1.1.1 The Oxford Archaeological Unit (OAU) has been commissioned by Rendel, Palmer and Tritton, Development and Engineering Consultants for the Department of Transport, to undertake an archaeological evaluation of the route of the North Oxford section of the proposed A40 bypass.

1.1.2 The brief was: to establish the location, extent and character of any archaeological remains within the corridor of the preferred route, including slip roads and areas of landscaping, in order that the full archaeological implications of the route be understood. Consultation with English Heritage and the local authorities was the responsibility of Rendel, Palmer and Tritton.

1.1.3 In order to achieve this, five stages of study were undertaken consisting of desk-top study of existing archaeological data and all aerial photographs, surface collection survey, geophysical survey, geotechnical test-pit inspection and trenching evaluation including sampling for palaeo-environmental information.

1.1.4 This final report draws together the overall results of the study, and is presented in three volumes (Volume 1 main report; Volume 2 appendices including specialist survey reports; Volume 3 maps).

1.2 Line of the route

1.2.1 The route runs from the east end of the Witney to Cassington improvement just east of Cassington (SP 46101042) round the north side of Oxford, to Marston (SP 57600752). The improved road would be a two lane dual carriageway with grade separated junctions.

1.2.2 At the Cassington end the route would initially follow the existing road corridor, which would be widened on the south side to make room for a new link road to Wolvercote. The route would diverge from the present road across the east end of the Yarnton gravel pit, to cross the Oxford to Worcester and Oxford to Banbury railway lines and the Oxford Canal on a series of embankments and bridges.
1.2.3 The route would enter cutting for a major intersection with the Oxford to Woodstock road just north-west of the intersection on the A34, with a replacement spur road running north eastward towards Kidlington. The route would then swing east to cross over the Oxford-Bicester railway and Oxford to Banbury road, clipping the northern edge of the North Oxford Golf Course. Remaining on embankment, the route would then swing south east into the Cherwell valley, passing east of St. Frideswide Farm and Cutteslowe Park to cross the Cherwell north of Marston.

1.2.4 The route would enter cutting through the bluff on the east bank of the Cherwell, passing south of Hill Farm to rejoin the existing A40 alignment. There would be a flying junction for east-bound traffic off the old A40, and a new link road to join a remodelled intersection for the road to Elsfield.

2. Assessment Approach and Methodology

2.1 General Approach

2.1.1 The brief for the work, agreed with the statutory consultees was to carry out a staged evaluation (see below) as laid out in "A40 North of Oxford Improvement - Brief for an Archaeological Assessment" Department of Transport (DS/L0494).

"(1) A desk top study to review existing archaeological data and all available aerial photographs held by the County Council or Royal Commission for Historic Monuments (England) RCHM(E) relating to land on and adjacent to the Preferred Route. The study should include the transcription of the relevant information at an appropriate scale.

(2) A fieldwalking survey of those fields available on the route which have not yet been adequately surveyed. Where land is not suitable for fieldwalking, the appropriateness of other survey techniques, for example auguring, should be considered.

(3) A programme of limited ground intervention on the line of the preferred route taking the form of geotechnical test-pit inspection and sample trenching to investigate the presence or absence of archaeological deposits. Trenching allows the greatest degree of confidence possible for locating archaeological sites and also allows the investigation of features, sites and areas of potential identified in earlier stages of the assessment. Any trenching not supported by
fieldwalking data should involve a hand-dug element designed to characterise the artefactual content of the topsoil.

2.1.2 The EC Directive 85/337 on Environmental Assessment and Department of Transport Departmental Standard HD18/89, requires that 'significant adverse effects' on the environment, including 'material assets and the cultural heritage' should be described. The DOT guidelines have since been updated by the publication of the Design Manual for Roads and Bridges Volume 11 (June 1993). The approach used for identifying significant effects on archaeological resources for this scheme has been to

i) identify the type of impacts that could arise from the scheme,

ii) identify which sites are likely to be affected,

iii) assess the likely scale of individual impacts, on the basis of the engineering drawings and information on construction methods in relation to the known or suspected extent and character of the sites,

iv) assessment of the significance of adverse effects, taking both the scale of the impact and the importance of the site into account (this allows for the obvious problem that a substantial impact on a site of very minor importance may be of less concern than a minor impact on a site of national significance).

2.1.3 The exact character and extent of identified sites tends to be uncertain (even after detailed trenching there is always some residual uncertainty about the character of subsoil archaeology). The DoE Guidelines on Environmental Assessment (DoE 1989, para 32) require that issues of uncertainty are recognised and not dismissed. In this assessment this problem has been dealt with as follows:

i) where possible the likely importance of sites has been stated, which can often be judged in a broad sense (at least as a range) even if detailed information is lacking

ii) where the information is insufficient even to arrive at a broad judgement of the value of sites they are classified as being of uncertain importance

iii) where either the scale of impact or the importance of a site is uncertain because of the limitations of data on the extent or character of the
remains, the significance of the effect of the scheme is inevitably also uncertain; in these cases the effects are classified as ‘risks’.

iv) the proposals for mitigation take account of the uncertainties and associated risks and put forward a means of dealing with them in a systematic way.

v) the assessment takes into account whether, given the nature of these risks the degree of residual impact is likely to be unacceptable.

2.1.4 The EC Directive also requires that positive as well as negative effects are considered. Because archaeological remains are essentially a finite, non-renewable resource, there is little scope for direct benefits (such as can accrue from habitat creation or relief of traffic from historic villages). However there are potential benefits in terms of gains to knowledge from excavations undertaken to offset the adverse effects of the scheme, and this is briefly considered in the section on mitigation.

2.2 Methodology

2.2.1 In order to implement the above approach a set of definitions and standards has been adopted. These are as follows:

2.2.2 Importance of archaeological remains:

Scheduled Ancient Monuments are of national importance, other sites may also be of national importance, or can be classified as being of county/regional or local importance. The assignment of these values to particular sites has been made by general reference to the non-statutory criteria for scheduling ancient monuments (as extended by English Heritage for their Monuments Protection Programme) applied within the context of the archaeological character of the area.

2.2.3 Types of impact considered and their occurrence in relation to construction and operation of the route.

i) permanent physical damage from landtake (construction stage onwards);
ii) permanent physical severance dividing a coherent site into separate disconnected parts (construction stage onwards);

iii) permanent damage to or loss of organic deposits or artifacts because of desiccation due to lowering of the local water table (construction stage onwards);

iv) short and long term visual and noise intrusion on the amenity of visible and publicly accessible features (construction stage and operational stages, tending to lessen on completion of construction and maturing of landscape planting).

2.2.4 Sources of impact:

The impacts identified above can arise from many different aspects of the proposed scheme. The stripping of topsoil and excavations in advance of constructing the road, landscape mounding, balancing ponds, temporary diversions, permanent diversions and construction sites or borrow pits are likely to disturb archaeological deposits. Construction activity generally and the appearance of the road both on completion and in the longer term are sources of visual intrusion. Lowering of the permanent local water table may result in the desiccation and decay of organic deposits or artifacts.

2.2.5 Scale of impact:

The scale of impacts has generally been defined in qualitative rather than quantitative terms. Three levels of impact are defined: 'severe' 'moderate' and 'slight'.

i) For severance the key issue is the extent to which key visual or physical relationships within or between sites would be lost. The surviving coherence and integrity of the complex is an important factor in this respect. Moderate impacts occur where the severance results in other significant relationships. Minor severance impacts are considered to occur where the additional severance effect does not lead to the loss of important relationships, particularly where the integrity of relationships is already limited.

ii) For physical damage to subsoil sites and the decay of organic deposits the key issue is the loss of in situ evidence about the past. Severe impacts are those where land-take or hydrological draw-down, whether
permanent or temporary, would lead to the permanent loss of in situ archaeological, palaeoenvironmental, or topographical evidence and physical features fundamental to the understanding and character of the site. Moderate impacts are those which would result in the permanent loss of evidence or physical features which contribute substantially to the understanding or character of the receptor but are not fundamental to it (i.e. sufficient evidence or features would survive for its essence to be retained and interpreted). Slight impacts are those resulting in the loss of types of evidence or physical features which are likely to be replicated to a significant degree in the remaining, unaffected parts of the receptor, or are of minor significance.

iii) For visual intrusion the key issue is the loss of amenity in terms of people’s appreciation and enjoyment of a site and its setting. Existing accessibility and the quality of the setting are key factors in this. Severe impacts are those where the historic setting of an archaeological monument with good visual amenity and historic integrity is radically altered and the new intrusive element dominates views particularly of, but also from the feature in at least one direction, or otherwise dominates its visual ambience. Moderate impacts are those where the new element is intrusive but does not dominate views of or from the feature or its visual ambience, or where it is dominant but the quality of setting is poor. Slight impacts are those where the historic setting of the feature has largely been destroyed though the new element is nevertheless intrusive (as above), or where the new element is sufficiently distant to be noticeable but not obviously intrusive, or affects such a small part of the site that its overall value is not significantly impaired.

2.2.6 Significance of adverse effects and risks:

The significance of adverse effects has been categorised as ‘very severe’, ‘severe’, ‘moderate’, ‘slight’ and ‘negligible’. As explained above, the significance of an effect depends on both the importance of the site concerned and the scale of impact. Moderate and more severe effects are considered significant because of conflicts with local and national planning guidance and legislation.

2.2.7 Need for mitigation:

The need for mitigation and its nature has been considered in the light of DoE
Planning Policy Guidance Note 16 and county and local plan policies.

2.3 **Baseline Survey Stage 1: Desk-top study**

2.3.1 The Desk-top study covers a 1000 m corridor along the length of the proposed route. Archaeological sites, features and find spots, including elements of industrial archaeology such as the Oxford Canal and various railway lines, (both current and disused), have been plotted on a base map at a scale 1:10,000 (see figures 1 & 2 of this volume). An accompanying gazetteer is provided (Table 1).

2.3.2 Previous archaeological fieldwork includes a major current archaeological study which began in 1989, involving extensive field walking, evaluation trenching and area excavation, is being undertaken by OAU in advance of gravel extraction by ARC immediately north of the present A40 in Yarnton and Cassington parishes. At the west end of the study area OAU has undertaken an evaluation of the route of the Cassington to Witney dualling of the A40. Both projects have been funded by English Heritage. These studies have revealed significant new archaeological sites, emphasising the previously largely undocumented archaeological potential of the Cassington and Yarnton sections of the route.

2.3.3 Otherwise there has been little modern systematic archaeological fieldwork within the route corridor prior to this study. Most of the previously recorded sites are known from air photography, field observations of earthworks (some since flattened), documentary evidence, or casual finds of objects. There has been some more intensive inspection of the area of Cutteslowe deserted village site for surface finds, but not a systematic survey.

2.3.4 A general over-view of the area beyond the confines of the corridor was made to ensure that important sites with implications beyond their immediate vicinity were not omitted, and that the overall archaeological context of the route is appreciated.

2.3.5 The following sources of information have been consulted:

i) The Sites and Monuments Record (SMR) for the county of Oxfordshire, in the Centre for Oxfordshire Studies, Oxfordshire County Council, (Department of Leisure and Arts).

ii) The National Archaeological Record, held by the Royal Commission on the Historical Monuments of England (RCHME).
iii) Air photographs, both vertical and oblique, held by Oxfordshire County Council SMR, RCHME, Cambridge University AP Library, and by OAU; air photographs of the route held by Rendel, Palmer and Tritton.

iv) The Victoria County History for the relevant parishes in Wootton and Bullingdon Hundred for historical documentation.

v) Historic maps, including Tithe and Inclosure maps, the First Edition 1" and 6" Map of the Ordnance Survey, dated 1880-1850 and 1872-80 respectively.

vi) Results of archaeological work carried out by OAU in Yarnton and Cassington for the Witney to Cassington dualling of the A40, and in relation to gravel extraction north of the road by ARC.

vii) The County List of Scheduled Ancient Monuments, Oxfordshire, dated 31-12-1987. A verbal check with English Heritage was made to confirm that the list is still up to date for this area.

2.4 Baseline Survey Stage 2: Field Survey

2.4.1 The survey brief approved by the Department of Transport and their advisors, English Heritage, was to undertake an archaeological assessment to establish the location, extent, condition, character, quality, integrity and date of any archaeological remains on the land required for the Preferred Route (including slip roads and areas of landscaping), in order to enable the full archaeological implications of the development proposal to be understood and appropriate archaeological recording or alternative mitigation measures to be taken.

2.4.2 The survey consisted of a surface collection survey of all available arable land, to identify significant concentrations of artifacts which might denote underlying archaeological deposits; a geophysical survey of pasture and arable areas, to identify buried pits and ditches; limited archaeological ground investigation; and examination of the exposed sides of an 'open' ditch running immediately adjacent to part of the proposed route, to observe directly any in situ archaeology. The applicability of the technique on Oxford Clay subsoils was tested by means of a pilot survey carried out adjacent to the route at St Frideswide's Farm, Cutteslowe.

2.4.3 The methodology used for the survey was approved by the Department of
Transport and their advisors, English Heritage.

2.4.4 **Surface Collection Survey (Appendix B)**

2.4.4.1 The surface collection survey, carried out during September and October 1992, was based on a corridor approximately 40m wide, ie 20m either side of the centre line, with provision being made for areas of extra landtake required for landscaping or junctions.

2.4.4.2 Artefacts were collected in twenty metre units, along transects set twenty metres apart. Field record sheets were used for each transect to record presence and absence of finds, soil and crop conditions, slope and topography and lighting and weather conditions. Ground conditions during the survey were generally poor. Soils were generally poorly broken down and very wet. Light conditions were variable, ranging from bright sunshine to rain.

2.4.4.3 Guidelines were devised in advance of the inception of fieldwork on what artefacts were to be collected and these were adhered to. Welsh slate and twentieth century plastics, bakerlite, asbestos, and large metal objects derived from modern agricultural machinery, were not collected.

2.4.4.4 All finds were removed to OAU for identification and quantification, the results being entered directly onto a database (IBM compatible PC using dBase IV). The distribution of finds was analyzed using software developed by OAU and plotted using EasyCad.

2.5 **Geophysical Survey (Appendix C)**

2.5.1 The geophysical survey was undertaken by A D H Bartlett BSc MPhil for the Oxford Archaeological Unit. Fieldwork for the survey was carried out at intervals between July and October 1992 and May 1993. Three geophysical techniques were used; magnetometer surveying, resistivity surveying and magnetic susceptibility testing (see Appendix C).

2.5.2 For the magnetometer survey, the sampling scheme adopted was to survey a 20m wide strip following the centre line of the proposed road wherever feasible. This width of strip provides a sufficiently large sample for the concentration and distribution of features to be assessed, as well as the likelihood of intersecting any reasonably large sites which lie within the road width, allows relatively rapid progress. Magnetometer readings were recorded using a Geoscan fluxgate magnetometer at 30cm intervals along traverses 1m apart.
2.5.3 A resistivity survey was conducted over the site of Cutteslowe Deserted Medieval Village to complement and clarify the results of the trenching assessment survey. The resistivity meter was chosen for this survey as, when compared to the magnetometer, it responds more favourably to subsurface masonry remains. The survey was designed to cover a number of surface stone scatters within an area of 40 x 110m. The site was marked out with a grid based on 30m squares. Readings were logged at 1m intervals using a Geoscan RM4 meter.

2.5.4 For the magnetic susceptibility readings, soil samples were collected at 20m intervals along the edges of the 20m wide survey strips. The readings were made with a Bartington MS2 meter.

2.6 Geotechnical Test Pit Inspection (Appendix D)

2.6.1 A series of 59 geotechnical test pits were cut along the proposed line of the A40 North Oxford Bypass by Soil Mechanics for Rendel Palmer and Tritton. Each geological test pit was examined for archaeological remains by the OAU.

2.6.2 The top 0.5m was carefully removed from the area of each test pit by a mechanical excavator using a 0.9m wide toothed bucket. Test pits section edges were examined for potential archaeological remains. Topsoil and turf deposits were monitored during the initial excavation stage and all excavated deposits were examined by hand for possible archaeological material.

2.7 Trenching Evaluation (Appendix D)

2.7.1 A total of 100 archaeological evaluation trenches, 101-197 and 300-303, were planned along the route of the proposed A40 North Oxford Bypass. Access was permitted for 36 of these trenches, 101-113, 127-132, 156-172, 186 and 300-303. Trenches were typically 30m in length and 1.7m wide.

2.7.2 Topsoil was carefully removed by a mechanical JCB excavator using a 1.5m wide toothless bucket, down onto either archaeological horizons or the natural subsoil, depending on which proved the closer. Topsoil and turf deposits were monitored during the initial excavation stage for possible archaeological material.

2.7.3 The resulting surfaces were cleaned by hand and inspected for archaeological activity. Any resulting features were sample excavated, where appropriate, in order to determine their date, quality of survival, extent and nature. Where
appropriate, archaeological features were sampled to determine their ecolfactual / environmental potential.

2.7.4 Prior to the trenching evaluation, two areas were highlighted as having particular archaeological potential. These areas were to the immediate south and west of the A.R.C. gravel quarry slip road, on the west-bound carriageway of the present A40 and the supposed area of Cutteslowe deserted Medieval village to the immediate north and south of the present Water Eaton road.

2.7.5 Where access could be gained within these areas, a 2% sample was investigated. In all other areas a 1 - 2% sample was evaluated. Where possible the position of sample trenches was determined by the results of earlier aerial, surface collection and geophysical surveys.

2.7.6 In addition to these four general surveys, part of an open ditch, which runs between the present A40 and the ARC gravel pit was examined for archaeological features. The sides of the ditch were examined for archaeological features along the length as indicated on, and the most important lengths were recorded in section.

3. Detailed Assessment

3.1 Introduction

This section consists of a detailed overview of the results of the study for the whole route. For convenience the description of the route is divided into parishes and into sections which relate to differences in geology, topography and land use. These divisions are shown in figures 1 and 2. This section also assesses the impact of the proposed road, and summarises the significance of the archaeological remains that would be affected, in order to describe the significance of adverse effects. In many cases it is the juxtaposition of individual identified deposits or 'sites' that allows their general character and significance to be understood. In these instances the assessment deals with them as coherent groups of material. On the whole the parish divisions are adhered to as in the description.

3.2 Assumptions

A number of assumptions are made in assessing the impacts of the proposed scheme. These are as follows:
i) Topsoil and soft underlying deposits would normally be stripped off prior to construction of embankments as well as cuttings.

ii) All temporary and permanent landtake for construction and landscaping works would be confirmed within the fence lines shown on the engineering plans (OX/PR/A/94 - of October 1992), with the possible exception of a substantial area between the route and the river Cherwell (approximately bounded by the 64m contour - no map was supplied), east of Cutteslowe Park, which might be quarried to provide material for embankments and an area for flood alleviation.

3.3 Geological and topographical background

Cassington Yarnton and Wolvercote (Chainage 500-3000) (Figure 1)

3.3.1 The geology of the Cassington and Yarnton stretch of the route consists of the Thames floodplain, which is an eroded part of the First Gravel Terrace where it is crossed by old palaeochannels and covered by alluvium. A number of now silted and invisible channels have been revealed by borehole surveys by ARC for gravel extraction N of the existing A40, an associated resistivity survey of West Mead, and by observation of very slight linear depressions revealed by flooding. The palaeochannels were created at a time when a greater volume of water was being carried. Their infilling can be associated with fluvial and alluvial deposits. A rise in the permanent water-table in the later prehistoric period was followed by general alluviation, particularly during the Roman and Medieval periods. These changes are thought to be largely attributable to changes in land use in the catchment (Lambrick 1992).

3.3.2 This has important implications for the identification and preservation of archaeology: sites tend not to be visible from surface finds and high water tables and alluvial deposits tend to prevent the occurrence of cropmarks, thereby often precluding the discovery of sites by air photography except on drier, thin-soiled gravel ‘islands’. These conditions also mean that sites which do exist are often very well preserved.

3.3.3 The topographical relationships between the areas of slightly higher gravel terrace, the palaeochannels and later alluvium are also important factors for understanding the archaeology of the pre-alluvial floodplain. Until the Roman period and in some cases later, the palaeochannels appear to have had at least some water in them and effectively divided the floodplain up into drier islands
of ground suitable for settlement and the creation of ceremonial monuments etc., while the channels provided a variety of water- or marsh-based resources. In some cases settlement activity took place close to the edge of channels and is deeply buried and particularly likely to retain preserved organic objects and deposits. Trial trenches within the ARC gravel pit have fairly consistently (four out of nine cases) revealed in-situ deposits and structural evidence including preserved timber platforms.

3.3.4 One of the palaeochannels (gaz. no. 009) runs ENE-WSW north of the present road, with another possible (gaz. no. 060) running E-W just south of the present road, and perhaps a third (gaz. no. 061) to the south again, converging with 060 on a line parallel to 009. East of their convergence these channels swing north of the present road (gaz. no. 010) before turning south to enclose the former Oxey Mead, to join the Wolvercote mill stream.

3.3.5 The gravel workings in Oxey Mead have been particularly productive of pleistocene floral and faunal remains, recovered from much more ancient channels within the gravel. There are a few palaeolithic artifacts but not from in situ contexts. These deposits have been largely destroyed within the gravel pit area, but they may well extend further east and south.

Gosford and Water Eaton (Chainage 3000-7400)

3.3.6 The geology of the route through this area consists very largely of Oxford Clay overlain in places along the Thames and Cherwell valleys by alluvium. The route largely avoids areas of gravel terrace which form the other main type of subsoil geology in the vicinity.

Marston and ElsfieId (Chainage 7400-9500)

3.3.7 The geology within the Marston part of the route is mainly Oxford Clay with rather patchy areas of gravel terrace on the bluff overlooking the Cherwell and alluvium on its floodplain.

3.3.8 The geology within the parish of ElsfieId is predominately Oxford Clay.

3.4 **Baseline Description & Assessment**

Cassington
Section 1 (Chainage 0000.0 - 1150.0)

3.4.1 An archaeological evaluation by means of trial trenching, commissioned by English Heritage in respect of the Witney to Cassington improvements has already covered the northern side of this section (ie the area closest to the existing A40). The area has not been resurveyed for this scheme, since the landuse (pasture) and depth of overburden revealed by the trenching (c. 0.5 to 1.4m) precluded effective survey by non-intrusive methods. Additional trenches (101-106) were cut by the OAU to the south of the ARC. quarry slip road during the trenching assessment survey conducted in 1993.

3.4.2 Witney railway (gaz no. 034)

3.4.2.1 The only site identified on either the SMR or NAR in the short stretch of the route within the parish of Cassington is the remains of the Witney Railway built in 1860, closed in 1970. North of the present road it has been converted to a metalled haul road for the gravel extraction in this area. A 1930’s road bridge for the railway carries the existing A40 over the former railway west of the study area.

3.4.2.2 The site is of local importance. There is a slight risk of a significant adverse effect, but no further mitigation will be required.

3.4.3 Later Bronze Age and Iron Age settlement areas (gaz no. 044)

3.4.3.1 At the west end of the section, in the area of the intersection for the Wolvercote to Cassington Link Road, a significant late Bronze Age and Iron Age settlement was defined in the evaluations undertaken for the Witney-Cassington A40 improvements. The sites were located on gravel islands between river channels and are well preserved, with areas of original ground surface surviving (gaz no. 065). The detailed extent of these two settlements is not entirely clear, and in fact they may lie either side of one or more palaeochannels (gaz. nos. 009 and 060), the late Bronze Age site to the north of channel 009 and the Iron Age material straddling channel 060.

3.4.3.2 More than one phase of use was represented by the late Bronze Age site, with at least one of them being domestic in nature. The Iron Age settlement to the south, which is separated from the Bronze Age settlement to the south by palaeochannel 060, was more coherent than the Later Bronze Age site and seemed to represent single, though potentially long lived settlement. Two postholes or pits and a possible ditch terminal were located during the trenching survey within trench 101. Artefactual evidence suggests a potential
Bronze Age date for the features. Preservation of finds from all sites was good.

3.4.3.3 The sites are likely to be of county importance, and have group value, not only with the earlier material to the north (also part of site 044) but also more generally as part of the archaeological landscape covering this part of the Thames floodplain through Cassington and Yarnton. This wider context is of national significance, though this has only been recognised in the light of work carried out in advance of the threat of gravel extraction which will eventually destroy most of the complex. The southern part of site 044 is the only area of Middle Iron Age Settlement so far proved to exist within this area of floodplain, though other areas are anticipated (particularly as suggested by site 014).

3.4.3.4 The full southward extent of site 044 has not been established, so it is not possible to predict the scale of the impact, but it seems clear that at least some of the site would be left undisturbed south of the new works, where cropmarks suggest further remains. Compression of waterlogged archaeological deposits is also likely. There would be a significant to severe adverse effect. This would be offset by means of archaeological excavation prior to road construction (see p.……).

3.4.4 Prehistoric burial (gaz no. 069)

3.4.4.1 Part of a single human burial of probable Late Neolithic or Early Bronze Age date was recorded during the trenching assessment survey from trench 102. At this stage it is unknown whether the burial represents a single inhumation or part of a larger prehistoric cemetery. Such burials unaccompanied by barrows or other monuments are relatively poorly known and understood, and are fairly rare. The Thames gravels, and Cassington area in particular being of importance fro such remains.

3.4.4.2 The adverse effect would be significant to severe, depending on whether or not this burial is part of a larger group. The effect would be offset by archaeological investigation prior to construction (see p.……)

3.4.5 Area of Roman activity (gaz no. 070)

3.4.5.1 A possible Roman ditch was recorded within trench 101 during the trenching. The full extent and significance of this potentially Roman feature is unknown, though by analogy with results from the work in the ARC pit north of the
present A40, it may originally have formed part of a boundary between an area of Roman arable and the wetter Thames floodplain to the south.

3.4.5.2 There is a slight risk of a significant adverse effect and this could be offset by means of a watching brief during construction.

3.4.6 Palaeochannel (gaz no. 060)

3.4.6.1 The presence of the palaeochannel south of the road is also a location for potentially significant prehistoric archaeology. This is evident from results of work further east in Yarnton parish (see below).

3.4.6.2 The proposed route would be embanked across this area. However there would be some impact if preserved waterlogged deposits have to be removed prior to embanking or will suffer compression during road construction and use. The adverse effect is potentially significant, and would be offset by archaeological investigation prior to construction (see p.......)

Yarnton

Sections 2 and 3 (Chainage 1150.0 - 2300.0)

3.4.7 These sections of the route lie either side of the present A40, section 2 to the south, section 3 to the north. Geophysical survey was carried out over the entire length of section 2, while part of section 3 was surveyed by examining a section of the open ditch which runs parallel to the road immediately north of the route corridor. Seven archaeological trenches (107-113) were cut to the immediate north of Yarnton Mead during the trenching assessment survey. The preliminary (unpublished) results of current work by OAU within the A.R.C. gravel pit are also considered because they have an important bearing on the interpretation of other results.

3.4.8 Geophysical anomalies (gaz no.045)

3.4.8.1 A cluster of pit-like anomalies was located by the geophysical survey at the western end of this area. These are weak features in terms of general geophysical results and the previous trenching in this area showed there to be c. 1.5 m of alluvium overlying a palaeochannel (gaz. no. 061).
3.4.8.2 It is likely that they are unimportant background noise, though they might represent features within the alluvium. From the observed results of geophysical surveying of areas subsequently excavated within the Yarnton gravel pit area, it is unlikely that the survey will have detected features beneath such a depth of alluvium.

3.4.8.3 The significance of the archaeological effect is considered to be negligible and could adequately be offset by means of a watching brief during construction.

3.4.9 Palaeochannel (gaz no. 061)

3.4.9.1 This palaeochannel is thought to join another north of the present road (gaz. no. 010) which is known from ARC’s borehole data and archaeological investigations by OAU in the area due to be quarried at the Yarnton gravel pit. This feature has also been located in the examination of a section of the open ditch immediately to the north of the present A40 (Figs. 1 & 3). Area excavations by OAU are in progress either side of this channel within the area due to be quarried.

3.4.9.2 The proposed route would be embanked across this area. However, there would be some impact if preserved waterlogged deposits have to be removed prior to embanking or would suffer compression during road construction and use. The adverse effect is potentially significant, and would be offset by archaeological investigation prior to construction (see p.)

3.4.10 Undated cropmark (gaz no. 015)

3.4.10.1 An undated cropmark is visible on air photographs, consisting of a rectangular enclosure c. 70 m across, with an entrance in the middle of the north side. This site partly lies beneath the present A40 and its verges, but extends some way to the north.

3.4.10.2 A brief magnetic susceptibility scan of the area carried out as part of OAU’s Yarnton project did not reveal any significantly high readings. This might indicate that the enclosure was not used for intensive occupation, but such results are difficult to interpret on alluvial soils. The quality of preservation and survival of this feature is unclear, particularly as it is not known how much may have been disturbed during construction of the present road.

3.4.10.3 No continuation of this site was found in an evaluation trench dug on the south of the existing A40 in connection with the Witney Cassington improvements, nor was any trace found in the geophysical survey.
3.4.10.4 The loss of a small part of this area would be a slight to moderate adverse effect. It would be offset by limited archaeological investigation prior to construction (see p.……).

3.4.11 Areas of prehistoric activity (gaz nos. 001, 024, 025, 062, 063, 064, 065 and 071)

3.4.11.1 In recent years there has been extensive fieldwork by OAU in advance of gravel quarrying north of the present A40, in both Yarnton and Cassington parishes. The areas examined extend from the present road across the flood plain and onto the second gravel terrace. All periods from the mesolithic to the present day are represented, and a complex pattern of shifting prehistoric settlement, landuse and ceremonial or funerary remains is emerging.

3.4.11.2 Trenching and test-pitting on the floodplain has revealed indications of prehistoric occupation, particularly associated with the raised gravel islands and the palaeochannels. In the prehistoric period (Mesolithic to Iron Age) it can be assumed that the water table was at a lower level than today. The rising of the water table towards the end of this period ultimately led to the final abandonment of the area for settlement in favour of drier, higher ground. Raised paths or causeways (gaz. no. 025) probably of this period, found buried beneath the alluvium, attest to rising water levels.

3.4.11.3 On a site 1 hectare in size north of the A40 and south of palaeochannel 010, preliminary results demonstrate the presence of extensive Neolithic activity. Linear ditches, posthole alignments, a penannular ditch and a ring ditch suggest a ritual use for this site (gaz no. 062), though the presence of clusters of finds and some small pits and postholes indicate domestic activity at some stage also. The features and all the finds are well-preserved, sealed by alluvium. Associated waterlogged material is preserved within the adjacent palaeochannel. The full extent of the site is not yet known but lies beyond the excavated area. A sand and gravel causeway (58.70m OD) with roadside gullies into which many smaller gullies drained runs across the site (gaz. no. 025). This feature is later and probably Iron Age in date.

3.4.11.4 Two excavation areas covering 2.5 hectares on the gravel island north of palaeochannel 010 revealed extensive Neolithic and Bronze Age activity, mostly domestic in character (gaz. nos. 063, 064).

3.4.11.5 To the south of the second of these areas, within palaeochannel 010, a wooden structure of late Bronze Age date was revealed, preserved in waterlogged silts (gaz. no. 024). This was probably a small bridge crossing the channel. It
was driven into deposits which contained the remains of wattling, probably revetting the sides of the channel, and evidence of wood processing, such as bark stripping. This activity was associated with the Bronze Age settlement excavated on the north bank of the channel (gaz. no. 064).

3.4.11.6 Immediately alongside the proposed route, adjacent to the palaeochannel (gaz. no. 010) on its eastern side a number of additional deposits (gaz. no. 065) have been identified in the side of the open ditch, stratified beneath the alluvium. These include a preserved prehistoric ground surface (58.41m - 58.86m OD) with bone and worked flint lying on top, which is covered by a possible mound. Several other features including three small gullies (c 0.5m wide) and a large possible pit which are probably of prehistoric date and associated with the above were also located in this part of the open ditch.

3.4.11.7 A scatter of three postholes, four pits, two gullies and a ditch (gaz. no. 001) has been located in two trenches undertaken by OAU for the Witney-Cassington A40 improvement evaluation, immediately south of the present road, adjacent to the north-west corner of West Mead. The only dating evidence was a single sherd of late Neolithic or early Bronze Age pottery. By analogy with the results of excavation further east (see below) these remains may well be part of an extensive spread of such features over the gravel island between channels 009 and 060, representing an extensive area of earlier prehistoric settlement activity.

3.4.11.8 An additional area of Neolithic or Bronze Age activity (gaz no. 071) was located to the east of site 001 during the 1993 trenching assessment survey (trenches 108, 109, 111 and 112. These revealed a small pit, a possible posthole and two ditches, all producing limited amounts of Neolithic / Early Bronze Age material. Evidence to suggest prehistoric tree clearance activity was also observed. The full extent of these deposits to the south is unknown.

3.4.11.9 Extensive areas of early prehistoric settlement and ceremonial activities such as has been discovered by OAU’s work in the gravel pit north of the A40 with good preservation of ground services are very rare and are of national significance. In this case the full interest of the area has only emerged from excavations in advance of gravel extraction which will result in the loss of a significant area of the remains. The nature of sites of this type, in which most of the material culture essential to their interpretation is contained within sparsely distributed pits, also means that there is a risk that key individual features might be lost.

3.4.11.10 The significance of the adverse effect upon this area of partially waterlogged Neolithic activity is considered to be severe.
3.4.12 *Surface artefact scatters* (gaz nos. 013, 014, 021 and 023)

3.4.12.1 Over much of the floodplain fairly sparse, overlapping scatters of earlier prehistoric flintwork (gaz. no. 023) and Iron Age (014), Roman (021) and Medieval pottery (013) have been located by surface collection survey within the area permitted for gravel extraction north of the route.

3.4.12.2 These scatters all constitute part of the nationally significant Cassington/Yarnton complex referred to above.

3.4.12.3 New landtake for the road improvements will not affect these scatters and therefore there will be no impact.

3.4.13 *Geophysical anomaly* (gaz no. 046)

3.4.13.1 A pit-like anomaly, similar to those represented by site 045 above, but in an area probably with less alluvial overburden, has been located by the geophysical survey on the south side of the present road (Fig. 3 and Appendix II, plan 6, section 4-3). This feature could be related to the extensive prehistoric remains to the north (see 3.3.7 above).

3.4.13.2 The significance of the archaeological effect is considered to be negligible and could adequately be offset by means of a watching brief during construction.

3.4.14 *Lot Meadows* (gaz no. 036)

3.4.14.1 The Lot Meadows at Yarnton or West Mead, so named because lots were drawn for the right to cut the meadow for hay, have never been inclosed or put under the plough. The Victoria County History suggests that the origins of the Lot Meadows may well be pre-Conquest. The matching of names of tenants and rate-payers of the C13 or C14 with names on the wooden balls used for the drawing of the Lots is unlikely to be co-incidental, and confirms the drawing of Lots as dating from this time. The practice ceased in 1978, but the extant area of meadowland remains common land and retains considerable ecological interest for its traditional grassland.

3.4.14.2 The scheme has been designed to avoid encroachment onto the SSSI historic meadowland.
Section 4 (Chainage 2300.0 - 2800.0)

3.4.15 No new survey work has been carried out on this section of the route, due to problems with gaining access.

3.4.16 *Palaeochannel (gaz no. 011)*

3.4.16.1 The area within Oxey Mead has now been extracted for gravel, and it is estimated that only about half the width of the palaeochannel still survives along its eastern boundary. Dewatering may have resulted in the desiccation of surviving waterlogged deposits immediately next to the quarry. The potential for further structural or other remains surviving on the line of the proposed road is therefore uncertain.

3.4.16.2 The eastern side of Oxey Mead, coinciding with the Yarnton-Wolvercote parish boundary is marked by palaeochannel 010 where it turns south towards the Thames. Its existence was confirmed by a trench on the line of the route dug as part of the gravel pit project. A trench across the channel 100m to the north of the route produced several flint flakes and some burnt bone from the old ground surface beneath the alluvium, suggesting further prehistoric occupation.

Wolvercote and Gosford with Water Eaton

Section 5 (2800.0 - 3550.0)

3.4.17 Geophysical survey was carried out over the entire length of this part of section 5, but no significant anomalies were located, which may well reflect the nature of the subsoil rather than a genuine absence of any archaeology. It was not possible to carry out surface collection survey over this section of the route due to landuse at the time of the survey. The area was not trenched due to problems with access, but will be prior to construction.

3.4.17.1 This section of the route is again under alluvium. The gravel workings in Oxey Mead have been particularly productive of pleistocene floral and faunal remains, recovered from ancient channels within the gravel. There are a few palaeolithic artifacts, but not from in-situ contexts. These deposits may well extend east into this section.

3.4.17.2 The proposed route will be embanked across this area and the scale of impact will depend on whether the preserved waterlogged deposits have to be
removed prior to embanking or will suffer compression during road
collection because the area was under pasture. Access was refused for
trenching.

3.4.20.2 During construction there would be severe visual intrusion on the setting and
amenity of this part of the canal during construction, with a moderate residual
long-term visual impact from the high embankment and new skew bridge once
construction and seeding of the earthworks was complete. The cast iron
boundary marker would be retained and replaced.

3.4.21 Yarnion Loop railway (gaz nos. 029 and 033)
3.4.21.1 The now derelict Yarnton Loop railway line (gaz no 029), was built between 1854 and 1861 to link the Worcester line with that to the east which went from Oxford to Banbury. The remains of a signal box (gaz no. 033) stand close to the crossing of the Woodstock Road.

3.4.21.2 There will be no direct impact on the signal box.

3.4.22 Geophysical anomalies (gaz no. 047)

3.4.22.1 A recurrent linear pattern of anomalies was located by geophysical survey and would appear to be the remains of ridge and furrow cultivation. Access was not granted for trenching these anomalies.

3.4.22.2 The moderate landtake impact of constructing the route would be slight to negligible adverse effect, if these features are attributable to ridge-and-furrow. However, if they are related to known Roman activity in the area, the adverse effect could be more significant. The risk of a significant effect arising would be offset by investigation prior to construction.

Section 7 (3750.0 - 4450.0)

3.4.23 The underlying geology of this section is Oxford Clay. A scatter of Roman pottery and an undated cropmark were previously recorded in the vicinity to the south of this section of the route. Geophysical survey was carried out over the entire length of this section, but surface collection survey was only carried out on the western half of the section, due to difficulty with cropping programmes. Six archaeological trenches (127-132) were cut in the field to the immediate south of Frieze Farm during the trenching.

3.4.24 Palaeolithic flint scatter (gaz no. 005)

3.4.24.1 A number of Palaeolithic flints have previously been found on Pear Tree Hill. Presumably they were found during quarrying at the, now disused, brick pit (gaz no. 032).

3.4.24.2 There is no new landtake and therefore no direct impact on the immediate surrounding area of this flint scatter.

3.4.25 Bronze Age pottery (gaz no. 073)
3.4.25.1 Fragments of Bronze Age pottery, recovered during the trenching survey from the upper levels of a large, early Saxon ditch (see 3.4.30 and trenches 127 and 128), would appear to indicate disturbance of nearby prehistoric features in the Saxon period. It is therefore possible that Bronze Age features may still remain undiscovered within the immediate vicinity.

3.4.26 Roman pottery scatters (gaz nos. 004 and 072)

3.4.26.1 Roman pottery (gaz no. 004) has been found close to a very dubious cropmark feature noted below (gaz no. 006), close to the line of the proposed link road between the two major intersections. There is not enough to suggest a definite settlement, but this remains a possibility since the material is a chance find rather than the result of specific survey work.

3.4.26.2 Roman pottery was recovered from topsoil contexts in trenches 131 and 132 and features within trenches 127, 128, 132 during the trenching, and from test pit T217 during the geotechnical test pit inspection. These scatters of pottery and features may together indicate an area of low level Roman settlement activity (gaz no 072).

3.4.27 Probable Saxon ditch (gaz no. 048)

3.4.27.1 A ditch producing 17 sherds of early Saxon pottery (from one vessel) from its primary levels was recorded from trenches 127 and 128 during trenching of the ditch would be consistent with that of a large enclosure. The full extent of this enclosure is unclear and to the west it may already have been destroyed by the modern road embankment. Saxon features near to an area of Roman activity (see 3.3.27 above) could provide useful information concerning the transitional period from Roman to Saxon.

3.4.27.2 The significance of the effect of the above area of archaeology is potentially moderate to severe. This could be offset by stripping archaeologically and excavating prior to the start of construction.

3.4.28 Undated cropmark (gaz no. 006)

3.4.28.1 A circular cropmark is identified by the NAR (gaz. no. 006); the feature was described as regularly appearing in pasture at Fries Farm but has not been seen on the air photographs examined. There is no further information to indicate the nature of the sighting which may be of no archaeological
significance.

3.4.28.2 This site is not directly affected by the road proposals but could be by construction activity, in which case field evaluation would be needed to establish whether it is of any significance.

3.4.29 Oxford to Woodstock Road (gaz nos. 028 and 075)

3.4.29.1 The intersection of historic transport routes in this part of the route corridor noted above is further complicated by the Oxford to Woodstock road gaz no.(075), a turnpike which became important as the principal route between the industrial Midlands and Southampton. The section crossed by the proposed route has already undergone major improvements. An uninscribed milestone (gaz no. 028) lies on the line of the proposed new road.

3.4.29.2 Although milestones are fairly common, they are of local importance and deserve relocation to an appropriate place, if it cannot be preserved in-situ.

3.4.30 Stratfield Brake (gaz no. 039)

3.4.30.1 An area of woodland, called Stratfield Brake lies on the northern edge of the corridor; the wood appears on the OS First Edition 25" for Oxfordshire 1872-80. The wood is also significant as it lies on the parish boundary, which survives on the west side of the present Kidlington Road as a bank approximately 0.30m high and 1-2m wide, with shallow ditches on either side approximately 0.75m wide.

3.4.30.2 A short length of the Kidlington - Water Eaton parish boundary bank would be lost. This would be a secondary impact to the original severance and landtake caused by the original construction of the Kidlington link road. The additional impact of the new road would be a negligible to slight adverse effect.

Section 8 (Chainage 4450.0 - 4900.0)

3.4.31 The small section of the route between the railway and road, 120m long and actively used as a golf course, was not surveyed.
3.4.32 **Oxford to Bicester railway (gaz no. 030)**

3.4.32.1 The Oxford to Bicester (Bletchley) railway line still exists and was recently partly revived for local passenger transport. It is of interest in relation to the local 19th century transport infrastructure.

3.4.32.2 There is not considered to be any significant impact on the railway line.

3.4.33 **Cotswold Ridgeway (gaz nos. 016 and 038)**

3.4.33.1 The line of the Cotswold Ridgeway to Oxford, is reflected in what is now the Oxford Road (gaz no 038), which was turnpiked in 1755 and upgraded several times since. It has long been suggested however, that it may have ancient origins as a Roman road route, particularly as it is mentioned in Saxon charter boundaries.

3.4.33.2 It is likely that the route only now survives as the topographical feature, having undergone successive modernisation up until recent years. A milestone (gaz no. 016) is recorded in the SMR, off the line of the proposed route.

3.4.33.3 There is not considered to be any impact on the Cotswold Ridgeway.

Section 9 (Chainage 4900.0 - 5200.0)

3.4.34 This section of the route lies on Oxford Clay. Nothing was previously recorded on this section of the route. Geophysical survey, surface collection survey and trenching (trenches 133 and 134), were carried out over the entire length of this section.

3.4.35 **Undated features (gaz no. 049)**

3.4.35.1 Site 049 was located to the east of the Oxford Road (gaz no. 038) during the geophysical survey. The whole of the field contained a considerable amount of magnetic activity with enhanced susceptibility readings. There were only a few anomalies which actually represented ditches or pits.

3.4.35.2 The relative lack of recognisable features may mean that the ditches etc. respond erratically according to variations in the composition of their fill. It is also possible that the magnetic response is due, in part, to modern disturbance or areas of made ground, since a concentration of post medieval
pottery was located from the surface collection survey. This area was trenched to clarify the nature of the geophysical anomalies.

3.4.35.3 A series of undated features, apparently consisting of three ditches and a posthole, were recorded from trench 133, within the area of recorded geophysical anomalies. The nature of these features, and their close association with a small but discrete deposit of fire-cracked flint, may indicate some prehistoric activity, but the remains are not likely to be of more than local importance.

3.4.35.4 There would be a slight adverse effect which would be offset by a watching brief.

Section 10 (Chainage 5200.0 - 6300.0)

3.4.36 Roman activity (gaz no. 050)

3.4.36.1 A small concentration of Roman pottery was located north of St Frideswide Farm during the surface collection survey. Roman pottery was also recorded during the trenching (trenches 135, 136, 142, 148) and geotechnical test pit inspection (T232 and T237). These finds may indicate an area of Roman activity along the south western margins of the proposed road corridor.

3.4.36.2 In the Anglo-Saxon charter boundary of Cutteslowe and Water Eaton there is reference to a mosaic pavement which is indicative of a villa. However, Dr Janet Cooper in her study of the Charter places the site several hundred metres NW of St. Frideswide Farm, beyond the road corridor. However, while it is possible that the villa's outer areas extend into the road corridor. The 1993 evaluation did not locate substantial Roman remains that could be associated with a villa. It should also be noted that the interpretation of the charter boundary marks is tentative, and there are problems with identifying particular boundary marks with precision.

3.4.36.3 The significance of the adverse effect on the pottery scatter is uncertain and would be offset by further trenching prior to construction.

3.4.37 Cutteslowe Placename and Round barrows (gaz nos. 002 and 003)

3.4.37.1 Further E along the proposed road route, two ploughed down round barrows (burial mounds) exist c.300 m from the route at SP 50401128. No recorded investigation has ever been conducted upon the barrows. It is possible that they also functioned as boundary markers.
3.4.37.2 The Place-Names of Oxfordshire (Gelling M. 1953 p267) suggests that the name Cutteslows refers to the burial mound of Cuen or Cuwine. Anglo-Saxon specialists do not however, believe that this necessarily means the place where an Anglo-Saxon named Cuen was buried. There are several such names in the Thames Valley: some of them occur more than once and obviously Cuen or for example Tappen (in the case of Taplow) cannot be buried in more than one place. In excavated examples the sex of the person buried and that for whom the barrow is named are not the same. While it is possible that such barrows may be of Bronze Age rather than Saxon origin, most examples of this placename type (eg. Taplow and Lew) seem to be associated with Saxon barrows.

3.4.37.3 The Place-Names of Oxfordshire (Gelling M. 1953 p267) make reference to the levelling of a barrow in the 13th century in the parish - two men were murdered and hidden in the hollow of a barrow at Cutteslows. It seems that they were assaulted while travelling along the Banbury Road. As a result the barrow was ordered to be flattened so as not to provide a hiding place for Brigands.

3.4.37.4 As the barrows lie some 300m from the proposed road, there is not considered to be any significant adverse effect.

3.4.38 Cutteslows Deserted Medieval Village (gaz nos. 007, 008 and 012)

3.4.38.1 Cutteslows is recorded as a deserted medieval village by Beresford (1954). It was a Saxon estate transferred, or partly transferred to St Frideswide’s Priory in 1004. No tenants were recorded in Domesday (1086), 6 people were assessed for subsidy in 1316 and 8 in 1327; only 7 people paid poll tax in 1377 and the hamlet was not separately assessed from Wolvercote in the 16th century. Six houses were recorded for the 1662 hearth tax. These figures suggest that the medieval to early post-medieval population may have been about 20-25 people. In the 19th and early 20th centuries the population of the township as a whole was 15 to 20. In 1871 15 people occupied two houses.

3.4.38.2 The NAR and County SMR each show an almost identical extent for the possible location of the village covering an area of c. 14 ha (gaz no. 007). The northern half of this area is within Gosford and Water Eaton parish, while the southern half lies within the extra-parochial area of Cutteslows, incorporating the farm still retaining the name.

3.4.38.3 Earthworks of a hollow way and crofts are visible on some air photos dating from the 1960’s. Sutton (1964, Fig. 38) shows the northern end of this area to be under ridge and furrow, but the air photographs suggest that this area
(which lies within the notional boundary of the village as suggested by the NAR and SMR, was a flat area of pasture (perhaps a green, rather than part of the settlement itself). The extent of ridge and furrow visible on air photographs of the 1940’s to 1960’s is generally useful in providing a notional limit to the likely location of the village.

3.4.38.4 The most definite physical features recorded are a rectangular earthwork c.25 x 30 m at the N end of the probable area of the village (gaz. no. 008), and a moated site at the south end, associated with the extant St Frideswide’s Farm (gaz. no. 012).

3.4.38.5 The county SMR records the finding of pottery by Dr J Cooper and T Hassall in 1983, though the location is not given, and J Steane (pers. comm.) also reports observing medieval pottery and rubble just NNE of St Frideswide’s Farm and SSE of the earthwork to the north. However the density and distribution of this material is not clear and it is therefore not certain whether it indicates actual settlement traces or associated midden deposits.

3.4.38.6 A programme of fieldwork on the line of the proposed route was started in 1992 consisting of surface collection survey and preliminary geophysical survey, followed by a series of evaluation trenches which were excavated to examine the above results in more detail.

3.4.38.7 A survey of the road corridor by the OAU in 1993 revealed the existence of 14 distinct surface scatters of stone (Figure 5). Five of these scatters, located around the east and western margins of a linear NNW-SSE aligned hollow way, were associated with a series of very low clay banks and a scatter of Medieval pottery (gaz. no. 050). The low clay banks probably represent croft boundaries.

3.4.38.8 The medieval pottery came from the arable area accessible for surface collection survey immediately north of the post medieval boundary of the Cutteslowe extra parochial area. This part of the site is marked on recent OS maps as rough grazing, but in the eighteenth and nineteenth centuries was part of Water Eaton Copse. According to Sutton this was within an area of ridge and furrow. However, air photographs suggest that this area was not ridge and furrow, but possible crofts of the deserted village (though an area to the south may have been crofts subsequently ploughed over). The present farmer has verbally reported that most of the area of the copse was bulldozed in the 1970’s to clear tree stumps so that the area could be ploughed. This appears to be confirmed by the stratigraphy revealed by the evaluation trenches, and may explain the lower levels of pottery recovered during the surface collection survey from the central portion of the medieval scatter in this area.
3.4.38.9 A total of 20 machine dug trenches were excavated across the area of Cutteslowe Deserted Village. Eight trenches, 144, 146, 148, 149, 300, 301, 302 and 303, sampled surface scatters of stone revealing evidence of Medieval masonry structures. At least six stone buildings were identified. Two of the buildings had cobbled areas on the outside. A well preserved sequence of floor layers associated with a large building, possibly a barn, was recorded in trench 148. The areas occupied by the buildings consisted of made-up ground. The made up deposits indicate potential for dating the stone buildings and the preservation of earlier phases of the village below. Evidence for a possible Medieval timber structure was also uncovered within trench 140 in the form of a linear feature with fill containing charcoal flecking, burnt wall daub and burnt stone. At Seacourt Deserted Medieval Village timber buildings were replaced by stone buildings (Biddle 1961-2), and the same sequence is likely to be represented here.

3.4.38.10 The 1993 resistivity survey located distinct subsurface features corresponding to each of the surface stone scatters in area 1 (Figure 32). Buildings were not easy to identify clearly within area 1, probably because of the quantities of surrounding rubble, though it is likely that most of the high readings represent structural remains of some kind. Anomalies were less distinct within area 2, though the survey plots show an overall rectilinear pattern which closely follows the plan of the soil marks.

3.4.38.11 Probable saxon pottery was recovered from trenches 141, 148 and 151. The material from 141 and 151, however, may prove to be residual. The material from trench 148 was retrieved from a shallow cut (148/23), the full extent and significance of which remains unknown. It is possible, however, that earlier phases of village survive beneath the later Medieval stone buildings. The presence elsewhere of tenth century pottery, indicates potential for understanding the early stages of Cutteslowe during its period as a Saxon estate.

3.4.38.12 The sample trenches, whilst demonstrating the close correlation of surface stone scatters with Medieval masonry and associated floors, have indicated the variable survival of archaeological deposits. Four courses of masonry, floor and foundation levels survived, for example, within trenches 302 and 303, while at least 0.9m of stratified archaeological deposits were recorded from trench 148. The depth of wall foundation up to 0.50m deep in trench 303 and associated sequence of floor layers in trench 148 could be a substantial building with earlier Saxon deposits preserved under the floor layers. A stone building of some size, and so status, could well be part of a group of manorial buildings. St. Frideswide Farm might well represent their successor. It is maybe significant that the only two small finds, a large copper alloy stud and
an iron riding spur were found in this area, in trench 149.

3.4.38.13 Trench 149 revealed linear WNW-ESE aligned reasonably straight sided, flat bottomed cut and five large fragments of poorly faced limestone rubble were recovered from the ploughsoil, which presumably indicates that the above mentioned linear feature was the robbed out course of a medieval wall. It is probable that all floor levels had been removed by later ploughing.

3.4.38.14 Trenches 147, 150 and 151 revealed a series of amorphous linear cultivation furrows and it is probable that the area to the immediate east of the hollow way was under arable cultivation during the life of Cutteslowe village.

3.4.38.15 Taken together the evidence suggests that the medieval village of Cutteslowe extended southwards from the earthwork at its northern end (gaz no. 008) to St. Frideswide Farm with a road along the middle between a scattering of crofts. The evidence from the air photographs, the surface collection survey and evaluation trenches so far suggests that buildings were concentrated along the west side and round the north end of the hollow way. Although at any one time the settlement may only have consisted of half a dozen houses, the village may gradually have shifted southwards. There is circumstantial evidence for this in that by the 18th century the abandoned earthwork and some of the crofts suggested by the air photography and surface finds lay in the parish of Water Eaton, while the surviving St. Frideswide Farm with its moat (gaz. no. 012) and the small settlement of "Little Cutteslowe" were within the extra-parochial area of Cutteslowe in Wolvercote parish. The key potential interest of the site is how a Saxon estate centre developed into a medieval hamlet, and how that settlement developed.

3.4.38.16 The significance of the adverse effect would be severe, with the construction of the road resulting in the probable loss of about 35-40% of the site. This would be offset by excavation prior to construction. Part of the landtake would affect an area that was part of a copse which was bulldozed in the course of agricultural improvement. A significant part of the landtake would affect backyards and paddocks rather than the sites of buildings. The principle impact is likely to arise in the area where the route would cross the farm access road to Water Eaton, which would have to be diverted through an underpass. In this area a number of buildings are relatively well preserved. The above would be offset by excavation prior to construction.

3.4.39 Geophysical anomalies (gaz nos. 053 and 054)

3.4.39.1 An area of enhanced magnetic susceptibility and strong magnetometer readings
(gaz no. 053) was recorded to the immediate ENE of St. Frideswide Farm. A rather dubious site, consisting of a series of weak magnetic readings (gaz no. 054) was located to the SE. These marginal sites may be related to the area of Cutteslowe Medieval village to the NW, though 054 may represent anomalies associated with St. Frideswide Farm as it coincides with a concentration of post-medieval finds (Fig. 3 and Appendix 3).

3.4.39.2 The significance of the adverse effect is considered to be slight and would be offset by a watching brief during construction.

Section 11 (Chainage 6300.0 - 7400.0)

3.4.39.3 The underlying geology is Oxford Clay with alluvium in the field next to the Cherwell. Geophysical and surface collection surveys were carried out over the entire length of this part of the route. Part of this section of the route includes an area of land which has been identified as a possible location for a borrow pit to provide fill material. This area was not defined by any plan.

3.4.39.4 Prehistoric finds and Undated mound (gaz nos. 040, 041, 042 and 066)

3.4.39.5 Along the banks of the Cherwell, a number of stray finds including a neolithic perforated antler tine pick (gaz no. 041) and a neolithic polished stone axe (gaz no. 042) have, over the years, been unsystematically recovered.

3.4.39.6 A small but discrete scatter of prehistoric flints was retrieved to the immediate north of mound 040 during the surface collection survey. Taken as a whole, these finds suggest a potential area of prehistoric activity.

3.4.39.7 The precise extent of landtake in this area remains undefined and therefore the adverse effect cannot be assessed.

3.4.39.8 An, as yet undated mound, has been recorded to the immediate north west of Southfield Farm. The extent of this feature is unknown due to comparatively recent plough disturbance. Single sherd s of prehistoric and Roman pottery were recorded from the makeup of the mound during the trenching assessment survey. A series of undated subsurface archaeological features were also recorded, during this survey, within the immediate vicinity of the mound.

3.4.39.9 The significance of the adverse effect on the mound is unknown. It is possible that it represents the remains of a plough denuded earthen round barrow of similar type to those recorded to the SW of Cutteslowe village (gaz
nos. 002 and 003) in which case it would be of regional/county importance. As the impact is not definite, the mitigation may be to avoid the mound altogether.

3.4.40 Medieval cultivation furrows

3.4.40.1 A series of irregular furrows, apparently representing the remains of Medieval ridge and furrow cultivation, were recorded around mound 040 during the trenching (trenches 158, 160 and 163), to the immediate east of Cutteslowe Park (trenches 169 and 170) and around the immediate area of sites 057 and 058 during the trenching assessment survey. These have not been mapped separately.

3.4.40.2 The traces of ridge and furrow are largely ploughed out and as such they are of very minor value and significant effect would result from their partial loss.

3.4.41 Prehistoric flint scatter, undated geophysical anomalies (gaz nos. 057 and 058)

3.4.41.1 A discreet scatter of worked prehistoric flints (gaz. no. 057) was located to the south east of Cutteslowe Park, close to the River Cherwell, during the surface collection survey. A number of well defined pit-like anomalies were detected during the geophysical survey to the immediate east (gaz no. 058). Small quantities of fire cracked flint were recovered during the trenching assessment survey, though no subsurface archaeological remains were detected.

3.4.41.2 The riverside location, probable presence of alluvium, location of a few well defined pit-like anomalies and the presence of discrete burnt and worked flint concentrations, all combine to suggest the potential for more extensive subsurface archaeological remains here.

3.4.41.3 There is potentially a significant adverse effect of moderate risk which would be offset by further evaluation prior to construction.

3.4.42 Geophysical anomalies (gaz no. 059)

3.4.42.1 A group of clearly defined pit-like anomalies was detected on an area of alluvium immediately adjacent to the River Cherwell during the geophysical
survey. That the features appear so clearly defined in an area of alluvial build-up is surprising, and, if real, may indicate that they are of recent date (e.g. post-medieval). It is also possible, however, that earlier archaeological features are preserved beneath the alluvium and out of the reach of the geophysical survey. Access was not gained for trenching.

3.4.42.2 The risk of a significant adverse effect would be offset by further evaluation by trenching prior to construction.

3.4.43 Geophysical anomalies on the east bank of the River Cherwell (gaz nos. 055 and 056)

3.4.43.1 Another group of weak anomalies (gaz. no. 055), clearly visible against a quiet background were located by the geophysical survey on the east bank of the River Cherwell. Access for trenching around 055 was not granted. Trenching around the area of 056 located a few scattered and doubtful pit-like anomalies, together with a line of disturbances possibly indicating an old field boundary (gaz. no. 056) were recorded to the east of Cutteslowe Park. The sampled area in this field was otherwise lacking in identifiable magnetic anomalies. No noticeable concentration of finds was recorded from either area.

3.4.43.2 Whilst the impact of the road construction would be severe, it is doubtful whether the site is of sufficient importance for this to be more than a slight adverse effect. This would be offset by means of a watching brief.

Marston and Elsfled

Section 12 (Chainage 6300.0 - 7400.0)

3.4.44 This section of the route lies on Oxford Clay. There was no previous archaeological record for this section. Geophysical survey was carried out at its western end, but no surface collection survey was undertaken as it was largely pasture.

3.4.45 Geophysical anomalies

3.4.45.1 Faint traces of linear geophysical anomalies were located along this section of the route. These anomalies are all on roughly the same east-west alignment, oblique to the road, but more or less square onto the pre-existing field boundaries. On this basis and their spacing they are interpreted as probably
being traces of largely ploughed out ridge and furrow cultivation. They have not been mapped separately.

3.4.45.2 The traces of ridge and furrow are largely ploughed out and as such they are of very minor value and no significant effect would result from their partial loss.

Section 13 (Chainage 8200.0 - 9000.0)

3.4.46 This section of the route lies on Oxford Clay. Again, there was no previous archaeological record of remains on the route in this section. The field survey has not added anything of significance on the line of the route, but little access was gained to this area of the site due to the delays in the cropping programme following bad weather. The surface collection survey produced only a general scattering of post medieval pottery. Access was only gained for a single trench (186) within this section. No subsurface remains were detected.

3.4.47 Marston Village

3.4.47.1 The only elements of archaeological interest which have been noted nearby are on the edge of the corridor in the old village centre of Marston. The church (gaz. no. 019) is Norman in origin, although the bulk of the building is C13 and C15. Medieval debris (gaz. no. 017) was recovered both from the foundations of the church and from the gardens in the immediate vicinity.

3.4.47.2 No direct adverse effect is envisaged.

Section 14 (9000.0-9300.0)

3.4.48 This section of the route lies on Oxford Clay. Again, there was no previous archaeological record for the section. Little access was gained to this area of the proposed road corridor due to the delays in the cropping programme following bad weather.
APPENDIX 2
Sources and Bibliography

Archaeology

Schedule of Ancient Monuments, Oxfordshire, English Heritage (1987)
Oxfordshire Sites and Monuments Record (SMR)
The National Archaeological Record, held by the Royal Commission on the Historical Monuments of England (RCHME), Southampton
Aerial Photographs at RCHME Swindon
Aerial Photographs at Oxfordshire SMR
Aerial Photographs at Cambridge University Aerial Photographic Library
Aerial Photographs of the proposed route held by Rendel, Palmer and Tritton

Published Works

Beresford M W 1954 The Lost Villages of England
DoE 1989 Environmental Assessment, a Guide to the Procedures HMSO
Gelling M 1953 The Place-Names of Oxfordshire
VCH 1990 Victoria County History
Wills H 1985 Pillboxes: A Study of U.K. Defences 1940

OAU - Unpublished Evaluation Reports

OAU 1991 Yarnton and Cassington, Worton Rectory Farm 1990/1 Assessments
OAU 1992 Yarnton Floodplain 1991
OAU 1992 A40 Cassington-Witney Dualling 1991

Maps Consulted
Plan of an Estate at Cutteslowe in the County of Oxford belonging to Christ Church, Oxford 1832

Ordnance Survey, 1st Ed. 25" Oxfordshire. Sheet xxxiii-3

Ordnance Survey Drawing 1814.

Kidlington (Hamlet of Gosford) Tithe Map 1850.

Plan of an Estate in Marston belonging to Corpus Christi 1605.

Marston Tithe Map 1844.

Wolvercote Inclosure Map 1834.

Elsfield Tithe Map 1840.

Kidlington and Thrupp Inclosure Map 1818.
A40
North Oxford Bypass

Archaeological Assessment

Appendix 3
Field Survey Report

OXFORD ARCHAEOLOGICAL UNIT
A40 North of Oxford Bypass
Summary Report on Fieldwork

Contents

1.0 Introduction

2.0 Surface Collection Survey and Examination of Exposed Sections
 2.1 Methodology
 2.2 Conditions
 2.3 Collection Policy
 2.4 The Finds
 2.5 Presentation of Data

3.0 Geophysical Survey
 3.1 Methodology

4.0 Detailed Overview of the Survey Results for the Preferred Route
 4.1 Section 2
 4.2 Section 3
 4.3 Section 4
 4.4 Section 5
 4.5 Section 6
 4.6 Section 7
 4.7 Section 8
 4.8 Section 9
 4.9 Section 10
 4.10 Section 11
 4.11 Section 12
 4.12 Section 13
 4.13 Section 14

5.0 Conclusions

List of Figures

Figures 1 and 2 Maps Showing Centre Line of Preferred Route with Sections of Route and Areas Surveyed

Figures 3 and 4 Gazetteer Maps
Appendix I Surface Collection Survey Figures (at back of this report)
List of Figures

Figures 1 to 4 Distribution of Medieval Pottery
Figures 5 to 8 Distribution of Roman Pottery
Figures 9 to 12 Distribution of Worked Flint

Appendix II Geophysical Survey

Technical report by A. Bartlett complete with location plans and plots
1.0 INTRODUCTION

1.1 The archaeological field evaluation was undertaken along the corridor of land required for the A40 Bypass proposal and constitutes Stage 2 and Stage 3b as set out in the "Proposals and Tender" document (OAU November 1991). The study has been undertaken by OAU as sub-consultants to Rendel, Palmer and Tritton, who have been appointed by the Department of Transport.

1.2 The brief was to undertake an archaeological evaluation to establish the location, extent, condition, character, quality, integrity and date of any archaeological remains on the land required for the Preferred Route (including slip roads and areas of landscaping), in order to enable the full archaeological implications of the development proposal to be understood and appropriate archaeological recording or alternative mitigation measures to be taken. Non-intrusive survey methods were used. This report covers the field survey elements and should be read in conjunction with the desk top study (OAU July 1992) and the Proposals and Tender Document.

1.3 This report contains an introduction explaining the general background and approach to the study, accompanied by plans showing areas surveyed (Figs. 1 and 2); and plans showing sites mentioned in the desk top and potential new sites located from the survey work (Figs. 3 and 4). The results of the surface collection survey are given in Section 2 and Appendix I, and the results of the geophysical survey presented in Section 3 and Appendix II. Section 4 is a detailed overview of the results for the whole route, divided into the sections and detailed in the OAU proposals and tender document. These sections were distinguished to split the route into convenient zones for the purpose of defining the requirements for field survey. They were determined on the basis of geology, topography and land use.

2.0 SURFACE COLLECTION SURVEY AND EXAMINATION OF EXPOSED SECTIONS

2.1 Methodology

The methodology used for the surface collection survey was as set out in the proposals and tender document and was approved by English Heritage.
The survey was based on a corridor approximately 40m wide, ie 20m either side of the centre line, with provision being made for areas of extra landtake required for landscaping or junctions. Artefacts were collected in twenty metre units, along transects set twenty metres apart. Transects were marked on Ordnance Survey base maps at a scale of 1:2500 for use in the field. These were used to locate transects on the ground within each land parcel by measuring intersections within field boundaries from fixed points.

Points at twenty metre intervals were located by using the above method, and used as fixed starting points. Sighting poles were set up at the opposite end of a land parcel (or at limit of vision) and the transect was walked, each twenty metre unit being measured cumulatively with fixed length strings to avoid the variation in individual pace.

Field record sheets were used for each transect to record:

i) Presence/absence of finds
ii) Soil/crop conditions
iii) Slope/topography
iv) Lighting/weather conditions

Guidelines were established in advance of the inception of fieldwork on what artefacts were to be collected (see Finds Section below) and these were adhered to fairly rigidly.

All finds were critically examined at OAU and the preliminary identification and quantification was entered directly onto the internal finds database (using dBase IV).

The site archive, including finds (subject to the landowners final agreement) will be deposited with the County Museum Service.

In addition, some sections of the recharge ditch, which runs between the present A40 and the ARC gravel pit was examined for archaeological features along the length as indicated on Figure 1, and the most important lengths were recorded in section.

2.2 Conditions

Ground conditions during the survey were generally poor. Soils were not well weathered (broken down) and very wet. Light conditions were variable, ranging from bright sunshine to rain.
2.3 Collection Policy

In an attempt to avoid the problem of bias caused by fieldworkers being selective in their recovery of finds, a collection strategy was devised. For most object categories total recovery was aimed at, irrespective of the date of the material in question. This would avoid discarding finds on the spot in the field leading to an imbalance in the recorded quantities of material recovered. All the finds were washed and sorted before any were discarded.

The only items not recorded were 20th century plastics, bakelite, asbestos and large metal objects derived from modern agricultural machinery. Welsh slate was not collected.

2.4 The finds

All the finds recovered during the surface collection survey were recorded on a computerised database (using dBase IV) in quite broad object categories. The finds were dated where possible. The data was then used to provide lists of artefact types by period and formed the basis for a series of finds distribution plots on each of the land parcels surveyed.

A total of 285 sherds of pottery were collected, 193 were post medieval, 79 Medieval and 13 Roman. Fifteen pieces of worked flint were located comprising 13 flakes and 2 tools. Analysis concentrated on those groups (particularly pottery and worked flint) which were likely to provide chronological information.

2.5 Presentation of data

The results of the surface collection survey are presented as a series of finds distribution plots by period on base maps of the route corridor (using EasyCAD 2 graphics program), at scale 1:2500.

There are no absolute criteria which separate a definite concentration of material, implying a site from random scatters. The way in which the distribution of finds have been plotted is according to their standard deviation from the mean for each individual find type. A significant scatter is taken to be one that shows considerable variation from the norm for the survey area. This is interpreted as a cluster of adjacent 20m squares each with more than two standard deviations from the mean for that find type.

The results, nevertheless, involve an element of subjectivity dependent upon the type of material in question. Worked flint, for example, survives relatively well in ploughsoil, though it can become heavily abraded.
Prehistoric pottery, however, being less well fired than Roman or medieval examples, does not survive well in disturbed ploughsoils and therefore is usually recorded, if at all, in very small quantities. In contrast, firecracked flint survives and remains identifiable even when broken down by ploughing.

Within this report a series of location plans show the areas surveyed and distribution plots of different categories of finds.

3.0 GEOPHYSICAL SURVEY

3.1 Methodology

This survey was undertaken by A.D.H Bartlett BSc., MPhil., under direction of the Oxford Archaeological Unit. Fieldwork for the survey was carried out at intervals between July and October 1992, as sections of the scheme became accessible following removal of crops or completion of access negotiations.

The two geophysical techniques used were; magnetometer surveying and magnetic susceptibility testing and are described in Appendix II-Report on Geophysical Survey 1992.

4.0 ASSESSMENT OF THE PREFERRED ROUTE

4.1 Section 1 Chainages 0600 to 1150
See Drawing Nos. OX/PR/ARCH/1 & 3

An archaeological evaluation by means of trial trenching, commissioned by English Heritage in respect of the Witney to Cassington improvements has already covered the northern side of this section (ie. the area closest to the existing A40). The area has not been resurveyed for this scheme, since the landuse (pasture) and depth of overburden revealed by the trenching (c0.5m to 1.4m) precluded effective survey by non-intrusive methods.

4.2 Section 2 Chainages 1150 to 2280
See Drawing Nos. OX/PR/ARCH/1 & 3

This section of the route lies on the south side of the present A40, Geophysical survey was carried out over the entire length of this section, but land use at the time of the survey was pasture which prevented surface collection survey from being undertaken. The preliminary (unpublished) results of current work by OAU within the ARC gravel pit are also considered.
because they have an important bearing on the interpretation of other results. In recent years there has been extensive fieldwork by OAU in advance of gravel quarrying north of the present A40, in both Yarnton and Cassington parishes. The areas examined extend from the present road access across the flood plain and onto the second gravel terrace. All periods from the mesolithic to the present day are represented, and a complex pattern of shifting settlement, landuse and ceremonial or funerary remains is emerging.

Trenching and test-pitting on the floodplain has revealed indications of prehistoric occupation, particularly associated with the raised gravel islands and the palaeochannels. In the prehistoric period (Mesolithic to Iron Age) it can be assumed that the water table was at a lower level and there is evidence of neolithic and Bronze Age settlement activity and ceremonial or funerary monuments. The rising water table towards the end of this period ultimately led to the final abandonment of the area for settlement in favour of drier, higher ground. Raised paths or causeways (gaz. no. 025 and others) probably of this period, found buried beneath the alluvium, attest to rising water levels.

Site 015

This undated cropmark is visible on air photographs, consisting of a rectangular enclosure c.70m across, with an entrance in the middle of the north side. This site partly lies beneath the present A40 and its verges, but extends some way to the north where it may have been disturbed by the open ditch for the gravel pit. A brief magnetic susceptibility scan of the area carried out as part of OAU's Yarnton project did not reveal any significantly high readings. The quality of preservation and survival of this feature is unclear, particularly as it is not known how much may have been disturbed during construction of the present road. No continuation of this site was found in an evaluation trench dug on the south side of the existing A40 in connection with the Witney Cassington improvements, nor was any trace found in the geophysical survey.

Site 001

A scatter of three postholes, four pits, two gullies and a ditch have been located in two trenches undertaken by the OAU for the Witney-Cassington A40 improvement evaluation, immediately south of the present road adjacent to the north-west corner of West Mead. The only dating evidence was a single sherd of late neolithic or early Bronze Age pottery. A geophysical survey was carried out for this scheme did not locate any significant anomalies.

Site 045

This site was located from the geophysical survey and consists of a cluster of pit-like features (Fig. 3 and Appendix II, plan 6, section 4-1) at the west end
of section 2. These are weak anomalies in terms of general geophysical results and the previous trenching in this area showed there to be c.1.5m of alluvium overlying a palaeochannel (gaz. no. 060). It is likely that they are unimportant background noise, though they might represent features within the alluvium. From the observed results of geophysical surveying of areas subsequently excavated within the Yarnton gravel pit area, it is unlikely that the survey will have detected features beneath such a depth of alluvium.

Site 010

This site is a palaeochannel, which was located during the OAU work at the Yarnton gravel pit. This feature was also located in a section of the recharge ditch immediately to the north of the present A40 (Figs. 1 & 3).

Site 065

Immediately alongside the proposed route, adjacent to the palaeochannel (gaz. no. 010) on its eastern side a number of additional deposits have been identified in the side of the open ditch, stratified beneath the alluvium. These include a preserved prehistoric ground surface (58.41m - 58.86mOD) with bone and worked flint lying on top, which is covered by a possible mound. Several other features including three small gullies (c. 0.5m wide) and a large possible pit which are probably of prehistoric date and associated with the above, were also located in this part of the open ditch.

4.3 Section 3 Chainages 1830 to 2280

Drawing Nos. OX/PR/ARCH/1 & 3

This section of the route lies on the north side of the present A40. This section was surveyed by examining a section of the open ditch which runs parallel to the road immediately north of the route corridor.

Site 025

This is a possible causeway, consisting of compacted sand and gravel surface (58.70m OD) with associated gullies either side, first identified during OAU trenching at Yarnton pit, has been located again along this section of the open ditch.

Site 046

A pit-like anomaly (gaz. no. 046) similar to those represented by site 045 above, but in an area with much less alluvial overburden, has been located by the geophysical survey on the south side of the present road (Fig. 3 and Appendix II, plan 6, section 4-3). It may well be related to the extensive prehistoric remains to the north just described.
4.4 **Section 4** Chainages 2280 to 2810
Drawing Nos. OX/PR/ARCH/1 & 3

Gravel extraction took place in Oxey Mead (gaz. no. 036) in 1990, wholly destroying the part of the former meadow to the north of the A40 which had already been converted to arable. A small part of the meadow area abutting the south side of the A40 survives in its historic form as a result of remaining common land and managed as a nature reserve.

No survey work has been carried out on this section of the route.

4.5 **Section 5** Chainages 2800 to 3450
Drawing Nos. OX/PR/ARCH/1 & 3

This section of the route is again under alluvium. The gravel workings in Oxey Mead have been particularly productive of pleistocene floral and faunal remains, recovered from ancient channels within the gravel. There are a few palaeolithic artifacts, but not from in-situ contexts. These deposits may well extend east into this section.

Geophysical survey was carried out over the entire length of this section, but no significant anomalies were located by the geophysical survey, which may well reflect the nature of the subsoil rather than a genuine absence of any archaeology. It was not possible to carry out surface collection survey over this section which was pasture at the time of the survey.

4.6 **Section 6** Chainages 3500 to 3720
Drawing Nos. OX/PR/ARCH/1 & 3

The underlying geology of this section of the route consists of Oxford clay. The only previously recorded archaeology was the milestone (OAU no. 028) on the west side of the Oxford to Woodstock Road.

A geophysical survey was carried out on the entire length of this section, but no surface collection was carried out.

Site 047

The recurrent linear pattern of this site, perhaps enclosed by ditches, was located by the geophysical survey and would appear to be the remains of ridge and furrow cultivation (Fig. 3 and Appendix II, plan 7, section 11). This site is of minor local importance and the results to date are considered a sufficient record.
4.7 **Section 7** Chainages 3780 to 4700
Drawing Nos. OX/PR ARCH/1 & 3

The underlying geology of this section of the route is Oxford clay. No known archaeology was previously recorded in this section of the route. Geophysical survey was carried out over the entire length of this section, but surface collection survey was only carried out on the western half of the section.

Site 048

A number of pit-like anomalies were located from the geophysical survey (Fig. 3 and Appendix II, plan 7, section 25-1). There were no significant scatters located during the surface collection survey.

Site 039

Stratfield Brake lies on the parish boundary of Gosford and Water Eaton and is an area of ancient woodland which will be affected by the link road in this section. The parish boundary physically exists as a bank 0.30m high and 1-2m wide, with shallow ditches on either side approximately 0.75m wide.

4.8 **Section 8** Chainages 4680 to 4900
Drawing Nos. OX/PR ARCH/1 & 3

This 120m section of the route, actively used as a golf course was not surveyed.

4.9 **Section 9** Chainages 4900 to 5200

This section of the route lies on Oxford clay. Nothing was previously recorded on this section of the route, but it is immediately to the west of the supposed location of the Cutteslowe DMV.

The geophysical survey and surface collection survey were carried out over the entire length of this section.

Site 049

This site was located by the geophysical survey (Fig. 3 and Appendix II, plan 8, section 36-1). The whole of the field contained a considerable amount of magnetic activity with enhanced susceptibility readings. There were only a few anomalies which actually represented ditches and pits. The relative lack of recognisable features may mean that the plan of the site is incomplete and that the ditches etc. respond erratically according to variations in the composition of their fill. It is also possible that the magnetic response is due
to modern disturbance/made up ground.

4.10 **Section 10** Chainages 5200 to 6260
Drawing Nos. OX/PR/ARCH/3

The underlying geology of this section is Oxford clay. The evidence for the previously recorded location of the Cutteslowe DMV, does not firmly locate the site.

Site 050

This is a small concentration of Roman and Medieval pottery located during the surface collection survey (Fig. 3 and Appendix I, Figs 2 & 6). This coincides with a pit-like feature found in the magnetometer survey (Appendix II, plan 8, section 36-2, S).

Site 051

This linear feature has been interpreted as a ditch with a possible associated pit (Fig. 3 and Appendix II, plan 8, section 36-2).

Site 052

This site is close to the postulated Deserted Medieval Village at St. Frideswide Farm (Fig. 3 and Appendix II, plan 8, section 36-3). There is a degree of general magnetic disturbance and faint traces of linear patterns, but no distinct features except for pit-like anomalies.

Site 053

This site was located by geophysical survey as an area of strong anomalies similar to those seen during the trial geophysical survey carried out by A.D.H. Bartlett 1992, elsewhere in this field and may be associated with medieval activity at the site (Fig. 3 and Appendix II, plan 9, section 37-1). These features also correspond to a strongly enhanced susceptibility reading.

Site 054

This site was also located by geophysical survey (Fig. 3 and Appendix II, plan 9, section 37-2). It is a marginal site consisting of pit-like features and may again be anomalies associated with the Cutteslowe DMV.

4.11 **Section 11** Chainages 6260 to 7450
Drawing Nos. OX/PR/ARCH/2 & 4

The underlying geology is Oxford Clay with alluvium in the field next to the Cherwell. No archaeology has been previously recorded.
Geophysical and surface collection surveys were carried out over the entire length of this section.

Site 068

This discreet and somewhat dispersed scatter of flints was located by surface collection survey, next to the River Cherwell (Fig. 4 and Appendix I, fig. 11). In isolation, this scatter is not particularly significant, but put in context with prehistoric finds which have previously been recorded in the immediate area, and from a topographical point of view, this slightly higher area of ground overlooking the River Cherwell would seem a favourable location for early settlement.

Site 055

This site was located by geophysical survey (Fig 4 and Appendix II, plan 9, section 38-1). It consists of some weak, but clearly visible anomalies against a quiet background.

Site 056

This site was located by geophysical survey (Fig. 4 and Appendix II, plan 10, section 38-2). The field in which this site is located is almost completely lacking in identifiable magnetic anomalies apart from a few scattered and doubtful pit-like anomalies and a line of disturbances which could indicate an old field boundary.

Site 057

This is a discreet scatter of flints located by fieldwalking (Fig. 4 and Appendix I, Fig. 11). The location next to the Cherwell and the probable presence of alluvium and the location of geophysical anomalies immediately to the east, indicates the potential for archaeological remains below ground surface.

Site 058

This potential site located by geophysical survey consists of a few well defined pit-like anomalies (Fig. 4 and Appendix II, plan 10, section 38-3).

Site 059

This is another group of clearly defined pit-like anomalies situated immediately adjacent to the River Cherwell (Fig. 4 and Appendix II, plan 10, section 38-4). The location on alluvium is rather surprising for such anomalies to be clear, and, if real, this may indicate a relatively recent date (eg. post-medieval). It is also possible that more features are out of the reach
of the geophysical survey underneath the alluvium.

4.12 Section 12 Chainages 6260 to 8200 Drawing Nos. OX/PR/ARCH/2 & 4

This section of the route lies on Oxford Clay. There was no previous archaeological record for this section.

Geophysical survey was carried out on the western end of this section, but no surface collection survey was carried out.

Faint traces of linear geophysical anomalies were located along this section of the route, which are likely to be the remnants of ridge and furrow cultivation. They have not been mapped separately.

4.13 Section 13 Chainages 8200 to 9100 Drawing Nos. OX/PR/ARCH/2 & 4

This section of the route lies on Oxford clay. Again, there was no previous archaeological record for the section. Little access was gained to this area of the site due to the delays in the cropping programme following bad weather.

The fieldwalking results produced only a general scattering of post medieval pottery.

4.14 Section 14 Chainages 9100 to 9350 Drawing Nos. OX/PR/ARCH/2 & 4

This section of the route lies on Oxford clay. Again, there was no previous archaeological record for the section. Little access was gained to this area of the site due to the delays in the cropping programme following bad weather.

5.0 CONCLUSION

Although the process of identification and quantification of areas of high archaeological potential is still in the early stages, the survey to date has located no individual sites or areas of archaeological potential of such obvious archaeological importance that they would be likely to stop the scheme going ahead. The route does cross some areas of significant archaeological potential.
Both the methods adopted for the general prospection survey have proved reasonably successful, with potential archaeological activity being located in the area of the supposed Cutteslowe DMV. The fieldwork has identified fifteen further areas of archaeological potential. The results also highlight the need for further survey work using intrusive methods, in order to clarify the extent, state of preservation and date of areas of archaeological potential.

The archaeological record needed to mitigate the impacts of the scheme would contribute to the research work that has been carried out in the Thames Valley catchment area in the last few decades. The prospection surveys outlined in this report have already begun this process and apart from helping to clarify issues of importance in the decision making process, the results will contribute to the overall archaeological mitigation of the scheme.
A40 North Oxford Bypass
Archaeological Surface Collection Survey

Fig 1

Medieval Pottery
- 1-2 Sherds
- 3 Sherds
- 4 Sherds
- 5-6 Sherds
/ Transects Surveyed

Scale 1:5000
A40 North Oxford Bypass
Archaeological Surface Collection Survey

Medieval Pottery
- 1-2 Sherds
- 3 Sherds
- 4 Sherds
- 5-6 Sherds
/ Transects Surveyed

Scale 1:5,000
Fig 4
A40 North Oxford Bypass
Archaeological Surface Collection Survey

Roman Pottery
* 1 Sherd
** 2 Sherds
/ Transects Surveyed
A40 North Oxford Bypass
Archaeological Surface Collection Survey

Roman Pottery
- 1 Sherd
- 2 Sherds
/ Transects Surveyed

Fig 7 Scale 1:5,000
A40 North Oxford Bypass
Archaeological Surface Collection Survey

Roman Pottery
• 1 Sherd
★ 2 Sherds
/ Transects Surveyed

Fig 8
Scale 1:5,000
A40 North Oxford Bypass
Archaeological Surface Collection Survey

Roman Pottery
* 1 Sherd
★ 2 Sherds
/ Transects Surveyed

Fig 5
A40 North Oxford Bypass
Archaeological Surface Collection Survey

Worked Flint
- 1 Flint
- 2 Flints
- 3 Flints
/ Transects Surveyed

Fig 9
A40 North Oxford Bypass
Archaeological Surface Collection Survey

- 1 Flint
- 2 Flint(s)
- 3 Flint(s)
- Transects Surveyed

Fig 10